学院概况

学院介绍

学院领导

机构设置

历史沿革

机构设置

  • 当前位置: 学院概况> 机构设置>

  • 王良晨


    王良晨,四川巴中人,博士,副教授,硕士生导师。主要研究领域包括以下两方面:一是研究非线性发展方程解的整体存在性、爆破、熄灭、交界面以及解的大时间行为;二是研究生物数学中Chemotaxis模型解的整体存在性、爆破、渐近行为等。目前在《Journal of Differential Equations》、《Discrete and Continuous Dynamical Systems-Series》等杂志上发表SCI论文30余篇,ESI高被引3篇。于2017年获“重庆市优秀博士学位论文奖”。目前主持国家自然科学基金1项,重庆市科委项目1项,重庆市教委项目1项,校级重点教改项目1项,主研国家自然科学基金3项,重庆市科委重点项目2项。

     

    主持或参加的科研项目:

    1. 国家自然科学基金(青年); 一类带增长项的趋化模型的数学理论研究(11601052 2017.01-2019.12主持)。

    2. 重庆市科委项目; Chemotaxis-(Navier-)Stokes模型解的定性研究 (cstc2017jcyjAX0178) 2017.09-2020.06主持)。

    3. 重庆市教委项目logistic源趋化模型解的定性分析 (KJ1600414)  2016.07-2018.08主持

    4. 国家自然科学基金(面上)非线性发展方程解的性质和图像处理中的应用(11371384 2014.01-2017.12(主研)。

    5. 国家自然科学基金(面上)生物数学中趋化模型解的爆破和渐近行为分析(11771062 2018.01-2021.12(主研)。

    6. 国家自然科学基金(青年) 趋化现象中交错扩散方程组解的渐近行为与爆破分析(11601053 2017.01-2019.12(主研)。

    7. 重庆市科委项目(重点); 图像处理中的非线性偏微分方程模型研究(cstc2017jcyjBX00372017.06 -2020.09(主研)。

    8. 重庆市科委项目(重点); 关于生命科学中趋化现象的数学模型研究(cstc2015jcyjBX00072015.01-2018.12(主研)。

    主要发表论文:(*为通讯作者)

    [1]Liangchen Wang*, Chunlai Mu, Xuegang Hu, Pan ZhengBoundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractantJournal of Differential Equations264 (2018) 3369-3401.

    [2]Liangchen Wang*, Chunlai Mu, Pan ZhengOn a quasilinear parabolic-elliptic chemotaxis system with logistic sourceJournal of Differential Equations256 (2014) 1847-1872.(ESI高被引)

    [3] Liangchen Wang*, Jin Zhang, Chunlai Mu, Xuegang Hu, Boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, 25 (2020) 191-221.

    [4]Liangchen Wang*, Yuhuan Li, Chunlai Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete and Continuous Dynamical Systems-Series A, 34 (2014) 789-802.(ESI高被引)

    [5] Liangchen Wang, Chunlai. Mu, A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, doi:10.3934/dcdsb.2020114.

    [6] Liangchen Wang*, Improvement of conditions for boundedness in a two-species chemotaxis competition system of parabolic-parabolic-elliptic type, Journal of Mathematical Analysis and Applications, 484 (2020), 123705.

    [7]Liangchen Wang*, Chunlai Mu, Shouming Zhou, Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion, Zeitschrift fuer Angewandte Mathematik und Physik65 (2014) 1137–1152.

    [8]Liangchen Wang*, Chunlai Mu, Ke Lin, Jie Zhao, Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Zeitschrift fuer Angewandte Mathematik und Physik66 (2015) 1633–1648.

    [9]Liangchen Wang*, Chunlai Mu, Xuegang Hu, Global solutions to a chemotaxis model with consumption of chemoattractant, Zeitschrift fuer Angewandte Mathematik und Physik67 (2016) .

    [10]Liangchen Wang*, Chunlai Mu, Xuegang Hu, Ya Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Mathematical Methods in the Applied Sciences, 40 (2017) 3000-3016.

    [11]Liangchen Wang*, Xuegang Hu, Pan Zheng, Ling Li, Boundedness in a chemotaxis model with exponentially decaying diffusivity and consumption of chemoattractant, Computers and Mathematics with Applications, 74 (2017) 2444-2448.

    [12]Liangchen Wang*, Chunlai Mu, Xuegang Hu, Pan Zheng, Boundedness in a quasilinear chemotaxis model with consumption of chemoattractant and logistic source, Applicable Analysis, 97 (2018) 756-774.

    [13] Liangchen Wang*, Yujie Wei, A new result for asymptotic stability in a two-species chemotaxis model with signal-dependent sensitivity, dependent sensitivity, Applied Mathematics Letters,106(2020), 106367.

    [14]Liangchen Wang*, Shahab Ud-Din Khan, Salah Ud-Din Khan, Boundedness in a chemotaxis system with consumption of chemoattractant and logistic sourceElectronic Journal of Differential Equations, 2013 (2013) 1-9.

    [15]Chunlai Mu, Liangchen Wang*, Pan Zheng, Extinction and non-extinction for a polytropic filtration equation with absorption and source, Journal of Mathematical Analysis and Applications, 391 (2012) 429–440.

    [16]Chunlai Mu, Liangchen Wang*, Pan Zheng and Qingna Zhang, Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Analysis: Real World Applications, 14 (2013) 1634–1642.

    [17]Xu Pan, Liangchen Wang*, Jing Zhang, Jie Wang, Boundedness in a three-dimensional two-species chemotaxis system with two chemicals, Zeitschrift fuer Angewandte Mathematik und Physik,  (2020) .

    [18]Nan Li, Liangchen Wang*, Chunlai Mu, Pan Zheng, Disappearance and global existence of interfaces for a doubly degenerate parabolic equation with variable coefficient, Mathematical Methods in the Applied Sciences, 38 (2015) 1465-1471.

    [19]Xuegang Hu, Liangchen Wang*, Chunlai Mu, Ling Li, Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Comptes Rendus Mathematique, 355 (2017) 181-186.

    [20] Xu Pan, Liangchen Wang*, Jing Zhang, Boundedness in a three-dimensional two-species and two-stimuli chemotaxis system with chemical signalling loop, Mathematical Methods in the Applied Sciences, doi: 10.1002/mma.6621.

    [21]Ke Lin, Chunlai Mu, Liangchen Wang, Boundedness in a two-species chemotaxis systemMathematical Methods in the Applied Sciences, 38 (2015) 5085-5096.(ESI高被引)

    [22]Dan Li, Chunlai Mu, Ke Lin, Liangchen Wang, Large time behavior of solution to an attraction–repulsion chemotaxis system with logistic source in three dimensions, Journal of Mathematical Analysis and Applications, 448(2017) 914-936.

    [23]Pan Zheng, Chunlai Mu, Liangchen Wang, Ling Li, Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity. Journal of Evolution Equations, 17 (2017) 909-926.

    [24]Shouming Zhou, Chunlai Mu,Liangchen Wang, Well-posedness, blow-up phenomena and global existence for the generalized b-equation with higher-order nonlinearities and weak dissipation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014) 843-867.

    [25]Ke Lin, Chunlai Mu, Liangchen Wang, Large time behavior for an attraction-repulsion chemotaxis system, Journal of Mathematical Analysis and Applications, 426 (2015) 105–124.

    [26]Yuhuan Li, Chunlai Mu, Liangchen Wang, Lifespan and a new critical exponent for a nonlocal parabolic equation with slowly decay initial values, Applicable Analysis, 92 (2013) 2618-2629.

    [27]Shuyan Qiu, Chunlai Mu, Liangchen Wang, Boundedness in the higher dimensional quasilinear chemotaxis growth system with indirect attractant production, Computers and Mathematics with Applications, 75 (2018) 3213-3223.

    [28]Jing Zhang, Xuegang Hu, Liangchen Wang, Li Qu, Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant, Electronic Journal of Qualitative Theory of Differential Equations, 31(2019) 1-12.

    [29]Dan Li, Chunlai Mu, Ke Lin, Liangchen Wang,Convergence rate estimates of a two-species chemotaxis system with two indirect signal production and logistic source in three dimensions, Zeitschrift fuer Angewandte Mathematik und Physik, 2017, 68:56.

    [30]Dan Li, Chunlai Mu, Ke Lin, Liangchen Wang,Global weak solutions for an attraction‐repulsion system with nonlinear diffusion, Mathematical Methods in the Applied Sciences, 40 (2017) 7368-7395.