学院概况

学院介绍

学院领导

机构设置

机构设置

  • 当前位置: 学院概况> 机构设置>

  • 朱伟


    朱伟,1976年生,博士,教授(重庆市三级),博士生导师,中国科学院数学与系统科学研究院博士后,纽约大学、香港城市大学、北京大学访问学者,重庆市学术技术带头人,重庆市巴渝学者特聘教授,重庆市高等学校优秀人才计划项目获得者,复杂系统智能分析与决策重庆市高校重点实验室主任,重庆市数学会副理事长,重庆市工业与应用数学会副理事长。美国《数学评论》(Mathematical Reviews)特约评论员。重庆邮电大学首届十佳优秀青年教师,重庆邮电大学系统理论及其应用研究中心主任,复杂系统理论分析与控制创新团队负责人。主要从事泛函微分方程、脉冲微分方程定性理论、复杂系统动态行为分析与控制研究。在IEEE Transactions on Automatic Control, Automatica、Int. J. Robust Nonlinear Control、J. Math. Anal. Appl.等国际著名期刊上发表科研论文50余篇,其中SCI检索40余篇,ESI收录6篇,热点论文1篇。Web of Science引用1300余次,Google Scholar引用率2000余次,H-指数19,i10指数27。主持国家自然科学基金2项,重庆市自然科学基金2项,重庆市高等学校优秀人才计划项目1项,教委教改项目1项。获重庆市科学技术奖(自然科学类)二等奖1项(排名1)、三等奖3项(分别排名2,3,4),获重庆市高等教学成果一、二等奖各1项(均排名4)。

    1教育背景和工作经历

    Ø 2018.02.02-2018.02.06香港城市大学,交流访问(合作导师:冯刚教授)

    Ø 2015.01.6-2015.01.13,2015.02.02-2015.02.06北京大学工学院 智能控制实验室,交流访问(合作导师:王龙教授)

    Ø 2014.02.13-2014.02.28香港城市大学,Senior Research Associate(合作导师:冯刚教授,刘璐博士)

    Ø 2012.08.22-2013.08.23纽约大学工学院,Visiting Research Scholar(合作导师: 姜钟平教授)

    Ø 2008.07-2010.07中国科学院数学与系统科学研究院,博士后(合作导师:程代展研究员)

    Ø 2004.08-2007.06四川大学数学学院,应用数学,博士

    Ø 2001.08-2004.07重庆邮电学院(现重庆邮电大学),控制理论与工程 硕士

    Ø 1995.08-1999.07 四川大学数学学院 数学基地班 学士

    2科研、教研项目

    2.1科研项目

    [1]国家自然科学基金,基于事件触发机制的多智能体系统脉冲一致性研究(No.61673080),2017.01-2020.12,项目负责人

    [2]国家自然科学基金,脉冲时滞二阶多智能体系统的一致性分析与控制

    (No.61004042),2011.01-2013.12,项目负责人

    [3]重庆市留学人员创业创新支持计划,面向多智能体编队控制理论及应用研究(No.cx2017099),2018.01-2020.12,项目负责人

    [4]国家自然科学基金,基于事件触发数字通信的多智能体系统分布式协同控

    制与优化(No. 61773321),2018.01-2021.12,排名第二

    [5]国家自然科学基金,事件触发机制下随机多智能体系统的有限时间一致性研究(No.61503053),2016.01-2018.12,排名第二

    [6]国家自然科学基金,逻辑动态系统的控制与优化(No.61074114) , 2011.01-2013.12,排名第二

    [7]重庆市教育委员会,基于事件驱动的多智能体系统一致性研究,重庆市优秀人才计划项目(省部级人才计划),2014.06- 项目负责人

    [8]重庆市自然科学基金,时滞切换系统的稳定性分析及在多自主体同步中

    的应用(CSTC 2009BB2417),2009.07-2012.07 项目负责人

    [9]重庆市自然科学基金基础与前沿研究项目,分数阶多智能体系统一致性理论研究(CSTC 2013jcyjA00026),2013.07-2016.12,项目负责人

    [10]重庆邮电大学博士启动基金,脉冲泛函微分方程的定性分析及其在神经网络中的应用,2007.07-2010.07,项目负责人

    2.2教研项目

    [1]重庆市教委教改项目,以工为主的高校数学与应用数学专业人才培养方

    案及模式的研究与实践(09-3-093),2009.09-2011.09项目负责人

    [2]重庆邮电大学研究生教育创新计划重点项目,系统科学研究生培养模式

    与师资团队建设,2011.10-2015.10,项目共同负责人

    [3]重庆邮电大学教育教学改革项目,大学数学公共基础课分层教育的探索

    与实践, 2015.09-2017.08,项目负责人

    [4]重庆邮电大学研究生课程建设试点项目,理学院研究生课程建设改革与

    实践,2015年6月至2018年5月,项目负责人

    [5]重庆邮电大学重点课程建设项目,《数学建模与数学实验》,项目负责人

    3主要获奖

    3.1科研获奖

    [1] 2016年度,面向仿生控制的系统动态复杂性理论及应用研究,重庆市自然科学二等奖(排名1),(2017.7)

    [2] 2008年度,非线性系统复杂行为分析与控制,重庆市自然科学三等奖(排名4),(2009.2)

    [3] 2009年度,不动点的部分问题研究及其应用,重庆市自然科学三等奖(排名2),(2010.4)

    [4] 2011年度,脉冲时滞系统的定性分析与混合控制,重庆市自然科学三等奖(排名3),(2012.6)

    [5] 2015年度,复杂系统中的数学基础理论研究,重庆邮电大学首届优秀科研成果一等奖(排名1)

    3.2教研获奖

    [1] 2008年度,构建平台,项目引导,强化学生工程实践与创新能力,重庆市高等教育教学成果 一等奖(排名4),(2009.2)

    [2] 2008年度,探索大学数学与信息处理技术相融合的创新人才培养模式,重庆市高等教育教学成果 二等奖(排名4),(2009.2)

    3.3指导学生课外科技活动获奖

    [1] 2005年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖1项,二等奖2项

    [2] 2006年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖0项,二等奖2项

    [3] 2007年指导学生获全国数学建模竞赛全国二等奖2项,重庆市一等奖2项,二等奖1项

    [4] 2007年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号

    [5] 2008年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖2项,二等奖3项

    [6] 2009年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖4项,二等奖3项

    [7] 2010年指导学生获全国数学建模竞赛重庆市一等奖2项,二等奖3项

    [8] 2010年重庆邮电大学优秀社团指导教师(数学俱乐部)

    [9] 2011年指导学生获全国数学建模竞赛重庆市一等奖3项,二等奖2项

    [10] 2012年指导学生获全国数学建模竞赛重庆市一等奖4项

    [11] 2012年指导学生获美国数学建模竞赛Meritorious Winner 1项

    [12] 2012年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号

    [13] 2013年指导学生获美国数学建模竞赛Honorable Mention 2项

    [14] 2013年指导学生获全国数学建模竞赛重庆市一等奖3项,二等奖3项

    [15] 2014年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖2项,二等奖1项

    [16] 2015年指导学生获美国数学建模竞赛Meritorious Winner 1项, Honorable Mention 1项

    [17] 2015年指导学生获全国数学建模竞赛全国一等奖1项,重庆市二等奖5项

    [18] 2015年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号

    [19] 2016年指导学生获美国数学建模竞赛Honorable Mention 3项

    [20] 2016年指导学生获全国数学建模竞赛全国二等奖2项,重庆市二等奖1项

    [21] 2016年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号

    [22] 2017年指导学生获美国数学建模竞赛Honorable Mention 2项

    [23] 2017年指导学生获全国数学建模竞赛全国一等奖1项,重庆市一等奖1项,二等奖4项

    [24] 2018年指导学生获美国数学建模竞赛Successful Participant 2项

    [25] 2018年指导学生获全国数学建模竞赛重庆市一等奖1项,二等奖2项

    4社会兼职

    [1]重庆市数学会副理事长

    [2]重庆邮电大学欧美同学会(留学人员联谊会)会长

    [3]重庆市工业与应用数学学会副理事长

    [4]重庆市欧美同学会(留学人员联谊会)常务理事

    [5]重庆市运筹学会理事

    5发表的主要科研论文

    [1]Wei Zhu*, Dandan Wang, Lu Liu, Gang Feng, Event-based impulsive control of continuous- time dynamic systems and its application to synchronization of memristive neural networks, IEEE Transactions on Neural Networks and Learning Systems, 2018; 29(8):3599-3609

    [2] WANG Dandan, ZHOU Qianghui,ZHU Wei*, Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics, J Syst Sci Complex (2018) 31: 120–129

    [3]Wei Zhu*,Qianghui Zhou, Dandan Wang, Consensus of linear multi-agent systems via adaptive event-based protocols, Neurocomputing 318 (2018) 175–181

    [4]Wei ZHU*, Qianghui ZHOU, Dandan WANG, Gang FENG, Fully distributed consensus of second-order multi-agent systems using adaptive event-based control,Science China Information Science, 2018, 61(12): 129201:1-3

    [5] Qianghui Zhou, Dandan Wang,Wei ZHU*, Consensus of First-order Multi-agent Systems via Adaptive Event-Based Impulsive Control, Proceedings of the 37th Chinese Control Conference, July 25-27, 2018, Wuhan, China, pp. 6996-7000.

    [6]Wei Zhu*, Huizhu Pu, Dandan Wang, Huaqing Li, Event-based consensus of second-order multi-agent systems with discrete time, Automatica, 79 (2017) 78-83(SCI: ES4NZ)

    [7]Wei Zhu*, Huaqing Li and Zhong-Ping Jiang, Consensus of multi-agent systems with time-varying topology: An event-based dynamic feedback scheme, Int. J. Robust Nonlinear Control 2017; 27(8): 1339-1350 (SCI: ER4QV)

    [8]Wei Zhu*,Bo Chen, Jie Yang, Consensus of fractional-order multi-agent systems with input time delay, Fractional Calculus & Applied Analysis, 20(1), 52-70, 2017( SCI:EL4HS)

    [9]Wei Zhu*,Wenjing Li, Ping Zhou, Chunde Yang,Consensus of fractional-order multi-agent systems with linear models via observer-type protocol,Neurocomputing,2017,230:60–65( SCI:EK6UR)

    [10]Wei Zhu*, Huizhu Pu, Qiuxuan Wu,Consensus of discrete-time linear multi-agent systems with event-based dynamic feedback scheme, IET Control Theory & Applications, 2017, Vol. 11 Iss. 15, pp. 2567-2572(SCI:FH6BQ)

    [11] Chunde Yang,Wenjing Li, andWei Zhu*,Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator, Discrete Dynamics in Nature and Society Volume 2017, Article ID 9256532, 8 pages( SCI:EI6CI)

    [12] Shiyun Shen, Wenjing Li, andWei Zhu*, Consensus of Fractional-Order Multiagent Systems with Double Integrator under Switching Topologies, Discrete Dynamics in Nature and Society, Volume 2017, Article ID 9394751, 7 pages (SCI:FE8OL)

    [13] Fenglan Sun, Lingxia Gao,Wei Zhu, Feng Liu, Generalized exponential input-to-state stability of nonlinear systems with time delay, Commun Nonlinear Sci Numer Simulat 44 (2017) :352–359 (SCI EA6MX)

    [14] Fenglan Sun,Wei Zhu,Yongfu Li, Feng Liu, Finite-time consensus problem of multi-agent systems with disturbance, Journal of the Franklin Institute 353(2016) 2576–2587( SCI:DQ0AK)

    [15] Huizhu Pu,Wei Zhu*,Dandan Wang, Consensus Analysis of First-order Discrete-time Multi-agent Systems with Time Delay: An Event-based Approach, Proceedings of the 35th Chinese Control Conference July 27-29, 2016, Chengdu, China, pp. 7979-7984

    [16]Wei Zhu*and Zhongyuan Tian, Event-Based Consensus of First-Order Discrete Time Multi-Agent Systems, 2016 12th World Congress on Intelligent Control and Automation (WCICA),June 12-15, 2016, Guilin, China, pp 1692-1696

    [17]Wei Zhu*,Zhong-Ping, Jiang, Event-Based Leader-following Consensus of Multi-agent Systems with Input Time Delay, IEEE Transactions on Automatic Control, 60(5): 1362-1367, 2015.(SCI:CG7TN)ESI高被引论文)

    [18]Wei Zhu*,Zhong-Ping, Jiang, Gang Feng, Event-Based Consensus of Multi-agent Systems with General Linear Models, Automatica, 50(2): 552-558, 2014. (SCI: AC8WS)ESI高被引、热点论文)

    [19]Wei Zhu*Daizhan Cheng,Leader-Following Consensus of Second-Order Agents with Multiple Time Varying Delays, Automatica, 46(12): 1994-1999, 2010. (SCI: 689KM)ESI高被引论文)

    [20] Huaqing Li, Xiaofeng Liao, Tingwen Huang, andWei Zhu,Event-triggering Sampling Based Leader-following Consensus in Second-order Multi-agent Systems, IEEE Transactions on Automatic Control, 60(7), 2015:1998-2003. (SCI: CL3SR)ESI高被引论文)

    [21] Huaqing Li, Xiaofeng Liao, Tingwen Huang,Wei Zhu,and Yanbing Liu, Second-Order Global Consensus in Multiagent Networks With Random Directional Link Failure, IEEE Transactions on Neural Networks and Learning Systems, 26(3): 565-575. 2015.(SCI:CE4XT)ESI高被引论文)

    [22] Huaqing Li, Xiaofeng Liao, Xinyu Lei, Tingwen Huang, andWei Zhu,Second-Order Consensus Seeking in Multi-Agent Systems With Nonlinear Dynamics Over Random Switching Directed Networks,IEEE Transaction on Circuits and Systems-I: Regular Papers,60(6):1595-1607,2013.(SCI: 153MP)

    [23]Wei Zhu*,Consensus of Multi-agent Systems with Switching Jointly Reachable Interconnection and Time Delays, IEEE Transactions on Systems, Man and Cybernetic, Part A, (Regular Paper), 42(2):348-358,2012.(SCI:895QZ)

    [24]Wei Zhu*Consensus of Discrete Time Second-Order Multiagent Systems with Time Delay,Discrete Dynamics in Nature and Society,Volume 2012, Article ID 390691, 9 pages(SCI:060YN)

    [25] Sun Feng-Lan andZhu Wei,Finite-time consensus for leader-following multi-agent systems over switching network topologies,Chin. Phys. B, 22(11), 110204, 2013. (SCI: 258UY)

    [26] Fenglan Sun andWei Zhu,Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents,International Journal of Systems Science, 46(11): 1961-1970,2015.(SCI:CG7UN)

    [27] Ping Zhou,Wei Zhu,Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis: Real World Applications, 12 (2011) 811-816. (SCI: 689HQ)ESI高被引论文)

    [28]Wei Zhu*Stability Analysis of Switched Impulsive Systems with Time Delays, Nonlinear Analysis: Hybrid Systems, 4 (2010) 608-617. (SCI:V22OX)

    [29] Chunde Yang,Wei ZhuStability analysis of impulsive switched systems with time delays,Mathematical and Computer Modelling,50(2009) 1188-1194.(SCI:490AP)

    [30] Yumei Huang,Wei ZhuDaoyi Xu,Invariant and attracting set of fuzzy cellular neural networks with variable delays,Applied Mathematics Letters, 22(2009) 478-483.(SCI:426AP)

    [31]Wei Zhu*,Global exponential stability of impulsive reaction diffusion equation with variable delays,Applied Mathematics and Computation 205 (2008) 362-369。(SCI:367XM)

    [32]Wei Zhu*,Invariant and Attracting Sets of Impulsive Delay Difference Equations with Continuous Variable, Computers and Mathematics with Applications, 55(2008)2732-2739.(SCI:309XM)

    [33]Wei Zhu*,Daoyi Xu, Yumei Huang, Global impulsive exponential synchronization of time-delayed coupled chaotic systems, Chaos, Solitons and Fractals, 35(2008)904-912. (SCI:ID236)

    [34]Wei Zhu*,A Sufficient Condition for Asymptotic Stability of Discrete Time Interval System with Delay, Discrete Dynamics in Nature and Society, Vol.2008, 7 pages. (SCI:332GD)

    [35]Wei Zhu*,Daoyi Xu and Chunde Yang,Exponential stability of singularly perturbed impulsive delay differential equations,J. Math. Anal. Appl., 328 (2007)1161-1172.(SCI:131EJ)

    [36] Shujun Long, Daoyi Xu andWei Zhu,Global Exponential Stability of Impulsive Dynamical Systems with Distributed Delays, Electronic Journal of Qualitative Theory of Differential Equations, 10(2007)1-13.(SCI:274QM)

    [37]Wei Zhu*,Daoyi Xu and Zhichun Yang, Global exponential stability of impulsive delay difference equation, Applied Mathematics and Computation, 181(2006)65-72. (SCI:108ZB)

    [38]Wei Zhu*,Daoyi Xu, Asymptotic Stability of Second-Order Discrete-Time Hopfield Neural Networks with Variable Delays, Lecture Notes in Computer Science, 3971(2006) 261-266. (SCI: BEM20)

    [39] Daoyi Xu,Wei Zhuand Junshu Long, Global Exponential Stability of Impulsive Integro-differential Equation, Nonlinear Analysis, 64(2006) 2805-2816. (SCI:040JR)

    [40]Wei Zhu*,MaoSen Wang, ChunDe Yang Leader-following Consensus of Fractional-Order Multi-agent Systems with General Linear Models,Proceeding of the 11th World Congress on Intelligent Control and Automation Shenyang, China, June 29 -July 4,2014:3491-3494. (EI: )

    [41]ZHU Wei*,YAN Chao, Consensus Analysis of Second-Order Agents with Active Leader and Time Delay via Impulsive Control, Proceedings of the 30th Chinese Control Conference, July 22-24, 2011, Yantai, China, pp.4753-4757(EI: 20113914369683)

    [42] Ping Zhou,Wei ZhuA novel fractional-order hyperchaotic system and its synchronization, Advances in Differential Equations and Control Processes, 3(1)(2009)53-61.

    [43]Wei Zhu*,Daoyi Xu, Global Exponential Stability of Fuzzy Cellular Neural Networks with Impulses and Infinite Delays, Journal of Mathematical Research and Exposition, 28(1)(2008)1-10.

    [44]Wei Zhu*,Stability Analysis of Fuzzy Differential Equations with Delay, Annals of Differential Equations,23(2007) 603-607.

    [45]Wei Zhu*,Zhaoyin Xiang and Zhiguo Yang, Mean Square Exponential Stability of Stochastic Vector Difference Equations with Variable Delays, J. Sichuan University,44(2007)495-498.

    [46]郑继明,朱伟(通讯作者),二阶时滞微分方程的脉冲稳定化,四川大学学报(自然科学版),51(4):643-648,2014.

    [47]朱伟,段文强,杨阳,沈建鑫,基于分数阶超混沌系统的图像加密算法及安全性分析,重庆邮电大学学报(自然科学版),24(4):501-506,2012.

    [48]Wei Zhu*,Shiquan An, Exponential Stability of Stochastic Fuzzy Hopfield Neural Networks with Time-Varying Delays and Impulses, Applied Mathematical Sciences, 4(11): 537 - 550, 2010.

    [49]Wei Zhu,Exponential Stability of Discrete-Time Cellular Neural Networks with Delays,重庆邮电大学学报(自然科学版),17(6):793-796,2005.

    [50]朱伟,时变离散动态系统的渐近稳定性和几何速度稳定性,应用科学学报,22(2):252-254,2004.

    [51]朱伟,杨晓松,线性离散动力系统的稳定性判定准则,应用科学学报,23(4):432-434,2005.