学院概况

学院介绍

学院领导

机构设置

机构设置

  • 当前位置: 学院概况> 机构设置>

  • 方长杰


        

    方长杰,博士, 教授,硕士生导师,美国《Mathematical Reviews》特约评论员,重庆市运筹学学会理事,重庆邮电大学省部级人才后备人选。2011年6月在四川师范大学获得博士学位, 2014年2月至2015年2月,在美国艾奥瓦大学数学系作为访问学者从事学术研究。目前的主要研究方向为最优化算法及其在图像处理中的应用、偏微分方程数值分析。现为期刊《Appl. Math. Lett.》、《Optim.》、《J. Ind. Manag. Optim.》、《Numer. Algor.》、《Appl. Anal.》等审稿人。近年来,在《IMA J. Numer. Anal.》、《Nonlinear Anal.- Real》、《Numer. Algor.》、《Optim.》、《Optim. Lett.》等刊物上发表论文30多篇,其中SCI论文近20篇。主持重庆市科委项目2项, 主持重庆市教委项目1项,主研国家自然科学基金2项,主研重庆市科委项目和重庆市教委项目各1项 。出版学术专著1部,参与教材编写1部。

    ◆  主讲课程:

     主讲《矩阵分析》、《现代优化计算》等研究生课程和《实变函数》、《泛函分析》、《离散数学》等本科生课程。

    ◆  出版专著与教材:

     [1]方长杰,陈胜兰. 变分不等式问题与算法,科学出版社,2017

     [2]郑继明,朱伟,刘勇,方长杰. 数值分析,清华大学出版社,2017

    ◆  指导学生科技活动

    [1]指导本科生参加数模美赛获二等奖(2016)和一等奖(2017)各一项。

    [2]指导研究生(张莉薪, 2016)获得重庆市研究生科研创新项目(CYS16173)1项。

    ◆  科研项目

    [1]国家自然科学基金,11771350,Navier-Stokes方程支配的变分和半变分不等式的自适应间断Galerkin方法,2018.01-2021.12, 排名第四

    [2]重庆市自然科学基金基础与前沿研究计划项目,cstc2016jcyjA0163,半变分不等式若干问题的研究及其应用,2016/07-2019/06,主持

    [3]重庆市教委科学技术计划项目,KJ1600433, Hadamard流形上的向量变分不等式和向量优化问题, 2016/07-2018/06, 排名第二

    [4]国家自然科学基金,11426055,向量变分不等式的间隙函数与误差,2015/01-2015/12, 排名第二

    [5]重庆市自然科学基金基础与前沿研究计划项目,cstc2014jcyjA00044,像空间分析及其在多目标优化问题中的应用研究, 2014/07-2017/06, 排名第二

    [6]重庆邮电大学博士启动基金,A2012-04,变分不等式的算法研究及应用,2012/09-2015/09, 主持

    [7]重庆市教委科学技术计划项目,KJ110509,变分不等式投影算法的研究及其应用,2011//01-2012/12, 主持

    [8]重庆市自然科学基金,CSTC2010BB9401,变分不等式投影算法及其在最优化中的应用,2010/10-2013/10,主持

    ◆  发表的主要论文:(*表示通讯作者)

    [1]C. J. Fang,W. Han*. Stability analysis and optimal control of a stationary Stokes hemivariational inequality, Evolution Equations and Control Theory, 2020, doi:10.3934/eect.2020046.

    [2] C. J. Fang, K. Czuprynski, W. Han*, X. Cheng, and X. Dai. Finite element method for a stationary Stokes hemivariational inequality with slip boundary condition, IMA Journal of Numerical Analysis,2019, doi:10.1093/ imanum/drz032.

    [3] Y. D. Xu*, C. R. Chen, andC. J. Fang.Holder continuity for colution mappings of parametric non-convex strong generalized Ky Fan inequalities, Numerical Functional Analysis and Optimization, 2019, 41: 344-360.

    [4] S. Migorski,C. J. Fang,and S. D. Zeng*. A new modified subgradient extragradient method for solving variational inequalities, Applicable Analysis, 2019, https://doi.org/10.1080/00036811.2019.1594202.

    [5] L. X. Zhang,C. J. Fang*, and S. L. Chen. An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems, Numerical Algorithms, 2018,79:941-956.

    [6]L. X. Zhang, C. J. Fang*,S. L. Chen, A projection-type method for solving multi-valued variational inequalities and fixed point problems. Optimization,2017,66: 2329-2344.

    [7] C. J. Fang, W. Han*, S. Migorski, M. Sofonea, A class of hemivariational inequalities for nonstationary Navier-Stokes equations, Nonlinear Analysis: Real World Applications,2016,31: 257-276.

    [8] C. J. Fang*, W. Han, Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow, Discrete and Continuous Dynamical Systems- A, 2016,36: 5369-5386.

    [9] C. J. Fang*, Y. Wang, S. K. Yang. Two algorithms for solving variational inequalities and fixed point problems, Journal of Fixed Point Theory and Applications, 2016,18: 27-43.

    [10] S. L. Chen*, C. J. Fang, Vector variational inequality with pseudoconvexity on Hadamard manifolds,Optimization, 2016,65: 2067-2080.

    [11] C. J. Fang*,S. L. Chen. Some extragradient algorithms for variational inequalities, In: Weimin Han,Stanislaw Migorski,Mircea Sofonea (eds.),Advances in Variational and Hemivariational Inequalities :Theory, Numerical Analysis, and Applications,Volume 33, Springer,2015.

    [12] C. J. Fang*, S. L. Chen,A projection algorithm for set-valued variational inequalities on Hadamard manifolds, Optimization Letters, 2015,9: 779-794.

    [13] C. J. Fang*, S. L. Chen,A subgradient extragradient algorithm for solving multi-valued variational inequality,Applied Mathematics and Computation, 2014, 229: 123-130.

    [14] C. J. Fang* , Y. R. He, An extragradient method for generalized variational inequality, Pacific Journal of Optimization, 2013,9:47-59.

    [15] C. J. Fang*, S. L. Chen, C. D. Yang, An algorithm for solving a multi-valued variational inequality,Journal of Inequalities and Applications 2013, 2013: 218.

    [16] C. J. Fang*, S. L. Chen, J. M. Zheng, A projection-pype method for multivalued variational inequality,Abstract and Applied Analysis, vol. 2013, Article ID 836720, 6 pages, 2013. doi:10.1155/2013/836720.

    [17] C. J. Fang* , Y. R. He, A double projection algorithm for multi-valued variational inequalities and a unified framework of the method, Applied Mathematics and Computation,2011, 217 : 9543–9551

    [18] C. J. Fang*, Y. R. He. A new projection algorithm for generalized variational inequality, Journal of Inequalities and Applications, vol. 2010, Article ID 182576, 8 pages, 2010. doi:10.1155/2010/182576

    [19] C. J. Fang*. Perturbed proximal-projection methods for nonlinear mixed variational-like inequalities.Journal of Mathematical Research and Exposition, 2010, 30:127-140.

    ◆  联系方式:

    [1]Email: fangcj@cqupt.edu.cn

    [2]地址:重庆邮电大学理学院 工程数学教研部